Connect with us

Science

Twenty-five years on: Hubble’s unsung heroes

The director of a new documentary on the Hubble space telescope reflects on the craftsmanship behind the planet’s most celebrated science instrument

 

In a darkened room at Nasa’s Goddard Space Centre in Maryland, I found a focused team of men and women, engrossed in their daily task of taking the pulse of the planet’s most celebrated science instrument: the Hubble space telescope. On the wall in front of them a live 3D rendering of Hubble is projected onto the wall – its orientation and position in orbit 550 kilometers above the Earth presented in real time for everyone in the room to see.

Today Hubble was being harnessed to hunt for distant icy dwarf planets, which Nasa’s New Horizons mission might be able to aim for later this year, after its historic flyby of Pluto. Such objects, found in the remote Kuiper Belt, over 4 billion miles from Earth, are typically only half as big as Long Island, NY, and so dark in colour that only Hubble’s exquisite mirror has a chance of detecting them.

When a giant space telescope was first seriously proposed in the 1970s, Nasa insisted that its primary mirror had to be the largest, smoothest piece of glass ever created. The polishing team at Perkin Elmer did such a perfect a job of making it smooth that had their 2.4metre-wide mirror been scaled up to the width of the Atlantic Ocean, no bump on it would be greater than four inches high.

Such unprecedented smoothness took these devoted optical engineers over three years of polishing to achieve; often working around the clock, seven days a week. Such commitment to the job would be at the heart of Hubble’s success in the decades that followed, as their mirror was repeatedly called upon to capture the faintest of light from some of the most illusive and distant objects in the universe.

Indeed, the craftsmanship of Bud Rigby and his polishing team was so ahead of its time that the new digital camera technologies inserted into the telescope by subsequent space shuttle servicing missions would not match its precision until 2009, some thirty years after the mirror had been manufactured.

But in the months that followed Hubble’s launch in 1990, with the discovery that their mirror had been made very slightly too flat at its edges, the perfection of its smoothness – and their dedication to making it so – was quickly forgotten. Twenty­-five years on, I found Rigby and his friend and colleague from Perkin Elmer ­ Lou Montagnino reluctant to take part in our film, still sore from the mauling they’d repeatedly received over the decades from the media.

Yet it was only thanks to their tireless work on the project that the flaw in the shape of Hubble’s primary mirror could be corrected so completely. The fact that the telescope remains at the cutting edge of cosmology, a quarter of a century after its construction, is a tribute to their outstanding skill.

Days before my visit to Hubble’s control room I’d sat with Rigby in his home in Connecticut and contemplated just how far back in time his mirror had now allowed us to see. In the top left-hand corner of the aptly named Hubble Ultra­ Deep Field image (re-­released by Nasa a few months before) is a small red smudge of light called UDFj­39546284, made from light that’s traveled through space for most of the history of the universe.

“Just stop and think about it”, reflects Rigby. “This is this is light that left billions of years ago and it’s now in our possession. We’ve seen it! The size of the universe is expanded hundreds and hundreds of times in just one sighting. It’s proof in my eyes that we built a telescope that was better than any on the Earth.”

Today it’s easy to take images like this for granted, but Hubble won’t always be here. Since the retirement of the space shuttle, no more servicing missions have been possible and the Hubble operations team expect their instrument to deteriorate significantly in the coming years.

First to fail are likely to be the telescope’s six gyros, which enable it to lock onto its targets, and which will start to fail in the coming years. In preparation for that time the team is pioneering procedures to work around this problem. “We always want to use three gyros to make us as efficient as possible to collect science data,” says Hubble’s deputy project manager Jim Jeletic, a 16-­year veteran of the project. “But now we’ve developed a one gyro mode – allowing us to only use one gyro at a time – to extend the life of Hubble for many more years to come.”

Combined with adapted software to compensate for other problems they might encounter with their ageing instrument, the team’s goal is to make sure they have at least a one ­year overlap with Hubble’s successor,­ the James Webb Space Telescope. “We believe we can get to 2020,” says Jeletic hopefully.

Thanks to the devotion of this team at Nasa Goddard, and the engineers at Perkin Elmer who first imagined the impossible and then made it a reality, Hubble continues to inspire us all. Twenty-­five years after this much-­treasured telescope made it into space, it is time to celebrate the men who made the mirror rather than vilify them.

As Ed Weiler, the telescope’s chief scientist for most of its life, puts it “Hubble was the great American comeback story, probably the most successful scientific project Nasa has ever done. Bar none.”

This article first appeared in USA TODAY’s special edition on the Hubble Space Telescope.

Christopher Riley is the producer and director of National Geographic Channel’s new film ‘Hubble’s Cosmic Journey’ , airing in the UK on the 21st April 2015. He has a Ph.D. in planetary science from Imperial College, London and is Professor of Science and Media at the University of Lincoln in the UK. Find him on Twitter at @alifeofriley

 

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

The Future Is Here – Bionic Eye Helps Blind Man See Again

If there is anything the internet likes it is a feel-good, happy story. The only thing that could be better than that is a feel-good happy story that involves some pretty incredible science.

Take for instance, the story of Allen Zderad who suffers from retinitis pigmentosa (RP), a rare degenerative eye disorder. When someone suffers from RP, which is genetic, there is a loss of cells called photoreceptors in the retina. Most people who suffer from RP experience night blindness, but in Allen’s case it caused him to go totally blind. He slowly started losing his vision almost 20 years ago, and despite being completely blind and having to quit his job as a chemist, he was able to teach himself how to continue with his hobby of woodworking.

A Solution for an Incurable Condition
An ophthalmologist at the Mayo Clinic, Dr. Raymond Iezzi got wind of Allen’s situation and was interested in helping him. Iezzi was actually heading a clinical trial of a brand new bionic eye. Iezzi explains that although RP causes a degeneration of photoreceptor cells in the retina, the rest of the eye remains healthy. Most importantly, the cells which form the optic nerve are intact. So naturally, Allen signed himself up and became Iezzi’s first patient to be fitted with the prosthesis, which is made by a company called Second Sight.

The Bionic Eye
Because the optic nerve is intact, the idea was to replace the function of the photoreceptors by bypassing the damaged retina, and sending visual signals directly to the retina. They did this by implanting a multi-electrode chip with 60 points of contact directly into the eyeball with an electronics package surrounding the outside of the eye. The electronics package is then hooked up to a pair of glasses featuring a camera that is hooked to a small patient-worn computer. The images from the camera are sent to the computer, which interprets them as light signals, and sends them to the brain – via the bionic eye and optic nerve.

He Once was Blind…
So let’s say you’ve been blind for 20 years, and you see for the first time – just imagine that sensation. Allen could barely contain himself, but when he saw the image of his wife for the first time in 20 years, the emotions take over. It’s just a beautiful scene…

It is amazing how science can change someone’s life.

The device still needs further development, and Allen is undergoing physical therapy to get used to wearing the device, but in the end it has improved his quality of life tremendously. He can already see things like human forms, and outlines of objects that allows him to walk without a cane. As the device develops, the images that allen see are getting clearer, and science has proven that there is almost nothing that it cannot fix.

Continue Reading

Trending